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SUMMARY 
The set of wave equations considered is an intermediate approximation of the Navier-Stokes equations. A further 
approximation leads to Burgers' equation. The range of validity of this simple wave approximation has been studied. 
The method used is especially useful for small nonlinearity. 

1. Introduction 

In some preceding papers [1, 2], L. J. F. Broer and the present author have paid attention to 
the validity of an approximation method which applied to a certain class of initial value 
problems for the set 

c~t+ [1 -t- e~b (ct,/3)] ~ = kt(~t~-flxx) , 

/~,- [~ + ~(~, ~)]~x = ~(~x~- ~x~), 

where e and / t  are positive constants, the subscript x (or t) denotes partial differentiation with 
respect to x (or t) and, if # = 0, the remaining set is hyperbolic. 

In [1], this has been done for a linear set of equations (e = 0) by making use of the explicit 
solution and in [2] for a set which is, as # = 0, totally exceptional in the sense of Lax [3]. 

The latter equations could be transformed into the linear equations studied in [1]. This was 
done by means of a nonlinear transformation. In both cases, the solutions of the equations did 
not contain shock waves. In this paper, we shall deal with equations that do have solutions of 
that kind. 

In the hierarchy of approximations emanating from the Navier-stokes equations, Lighthill 
[4] finds the set 

7 - 1  
a, + va x + - ~ -  av~ = O , (1) 

2 
v, + vv~ + aax = 5vx~ , (2) 

7 - 1  

where a is the sound velocity, v the flow velocity, 7 = Cp/Cv and 6 is the diffusity of sound. We 
have 

6 = ~ v  + ~-~ + ~ - 1  k 
Po poCp ' 

where p is the density, v the kinematic-, #v the bulk viscosity and k the coefficient of heat 
conduction. The subscript zero refers to the undisturbed situation. 

The left hand side of equations (1) and (2) are the exact forms of the equations for sound 
waves of finite amplitude under thermodynamically reversible conditions. They form the 
basis of Riemann's  classic analysis [5]. The right hand side consists of a linearized approxima-  
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tion of the diffusion and heat conducting effects, obtained by assuming that 6 and the dimension- 
less velocities a-ao/a o and via o are small. 

We shall not concern ourselves with the validity of the approximations Lighthill used to 
arrive at (1) and (2) but assume that, if 6 and the dimensionless velocities are small enough, (1) 
and (2) describe a real physical situation. 

By introducing the Riemann variables 

a 

c~=�89 + 7 _ 1 ,  

a 
+ 

we find 

+ (3) 

These equations are of the required form. 
The approximation we shall consider and which is due to Lighthill, has been described 

extensively in [1] and [2]. Here we shall only give a brief account of the ideas behind it. The 
approximation applies to the class of initial conditions 

(x, O) = f ( x ) ,  
p(x, 

if 6 = 0, then (4) is satisfied identically and the solution of (3) is a simple wave. Now, the ap- 
proximation which, as in [1] and [2], will be called the simple wave (sw) approximation 
henceforth, is based on the following assumption. When ~5 is small but not zero, then, for some 
finite interval of time, fl will be negligible and ~ will be approximately described by the solution 
of an equation of Burgers type : 

t 7+1 7 3 -  l : l ~ x x  . (5) ~, + ~ - ~  + z f l o  ~ 

However, the problem is that f l - f lo  will grow from zero and therefore, it is not clear a priori 
that ~ satisfies (5) for longer intervals of time too. In this paper we shall indicate a range of 
validity of this sw approximation. The equation of Burgers, which is exactly solvable ([4, 6, 7]), 
is often used to describe the behaviour of small amplitude shock waves. Therefore, it is especi- 
ally interesting to know whether or not the sw approximation holds, in a sense yet to be defined, 
in an interval of time larger than that necessary for a shock wave to develop. 

In sections 2 and 3 some mathematical notation needed and the definition of what we shall 
call a good sw approximation is given. The method we shall follow to deal with the problem is 
explained in section 4. It is based on a priori estimates. In section 5 local a priori estimates are 
constructed. From these estimates, we obtain an upper bound for the range of values of t, for 
which the sw approximation holds. That upper bound is "always" smaller than Tcr i t  , the time at 
which a shock wave starts to develop. Partly this is due to the method followed. In section 6, 
using global a priori estimates for Burgers' equation, we shall deal with the question whether or 
not it will be possible to improve the results found in section 5, in this way. 

2. Mathematical Notations 

R is the interval of the real numbers. T and N are positive numbers. Q~ is the rectangular 
domain of points x, t satisfying 0_< t <  T, [xJ < N. As a rule the index N will be omitted. If 
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N = ~ ,  Qr  is denoted by H T. FT is that  par t  of the boundary  of QT consisting of the line segments 
t = 0, x = - N  and x = N. L 2 (R) is the Hilbert-space consisting of all real square (Lebesque) 
integrable functions. The inner product  ( , ) and norm II II are defined by 

(u, v)= u(x)v(x)dx ,  ]lull = (u, u) & . 
-c~o 

W2" (R) is the Hilbert-space consisting of all elements of L 2 (R) having generalized derivatives 
up to order  n inclusively, that  are square integrable on R. The inner p roduc t  ( , ), and no rm 
[] ]], are defined by 

(u, V)n = ~ (D iu, D i v)+ (u, v), I lull. = (u, u). ~ , 
i = 1  

where Diu is the generalized derivative of order  i. 
In t roduce the following distance in QT: 

d(P1, P2) = ( I x ' - x ' [  2 + I t ' -  t"l) ~ , 

where P1 = (t', x') a n d / ' 2  = (t", x"). 
Let  

iu[o = s u p l u l ,  lul= = lulo + sup lU(nl)-U(P2)] 0 <  ~ <  1 
QT OT d(Pl' P2) ~ 

lull +~ - -  lu l l+  luxl~, 

lul2+~ = ]u l l+~+  lut]~+ ]Ux]l+~. 

C2+~(QT) is the Banach-space consisting of all functions u on QT for which lu]2+~< ~ .  The  
norm is defined by lu]2+~ (cf. Fr iedman [8]).  

Consider  in HT a quasi-linear system of the form 

Lu = u t -  Aux~ + B(u)u~ = O, 

in which u (x, t )=  (Ul (x, t) . . . . .  Un(X, t)) is an unknown vector function, A is a constant ,  non- 
negative n • n-matrix and B a n • n-matrix of which the elements depend on u. 

Definition. In HT, a classical solution of the Cauchy problem 

Lu = 0 ,  (1) 
u (x, 0) = f ( x ) ,  (2) 

is a solution that is continuous in HT, that has continuous derivatives ut, u~ and u~x and satisfies 
(1) at all interior points of liT, that remains bounded as Ix] ~ ~ and for which (2) is valid (cf [11]). 

Finally we state two lemmas that  will be used in the sequel. 

Lem ma  1. Let u~ W~(R), then DJu--+O as I x l ~ ,  where j=O, 1 . . . . .  n - 1 .  

A proof  may be found in Smirnow [9], p. 486. F rom Peletier and Wessels [10], we infer 

Lem ma  2. Let u6 W~ (R), then a continuous function 0 exists with ~ = u a.e. and 

sup l a (x) l  < -~ x /211ul lx .  
x~R 

The lemma is known as Sobolev's first embedding theorem. 

3. The Definition of  a Good SW Approximation 

First, we shall write equat ions (1.3) and (1.4) in dimensionless form. Assume 3-->Y > 1 (Air 
7 -~ 1,4). In t roduce 
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x = L x ' ,  t = Lao 1 t ' ,  6 = 2a o L/~, 

ao 2eao , - ~ ~ a ~  2~ao/~, 
, ~ = ~ _ 1 + ~ + 1  , 

where L is some reference length connected with c((x', 0), e a dimensionless measure for the 
strength of the wave. e and L will be chosen such that the absolute maximum of ~' (x', t) + fl' (x', t') 
is not larger than, and of(de'/dx')(x', 0) is equal to one. It is not a priori clear that this is possible 
for all t > 0. However, it will turn out to be possible for the range oft-values we are interested in. 

Performing the indicated substitutions in (1.3) and (1.4) and dropping the accents, we obtain 

~,+ [ 1 + ~ +  ~0/~] ~x = # ( ~ = - / L x ) ,  

/~,-  [~ + ~/~+ E0~]/L = ~ ( / L x -  ~ x ) ,  

where 0 = (T - 3)/(7 + 1) ( -  1 < 0 < 0). 
The initial conditions become 

(x, 0) = f ( x ) ,  
/~(x, 0) = 0 .  

(1) 

(2) 

(3) 
(4) 

The sw approximation is given by the solution ~o (here and in the following, the subscript zero 
no longer denotes the undisturbed value of a quantity) of 

~o,+ [1 + ~o]  ~o~ = ~ 0 ~ ,  (5) 

~o (x, 0) = f ( x ) .  (6) 

Definition. For solutions c~ and %, both belonyin9 to L 2 (R) (these are the only ones we consider 
here), ~o will be called a 9ood sw approximation of 7 in the interval of time [0, T] if, for all tel0, T] : 

II~-%l[ < 611f[I (0< 5<  1). (7) 

6 is a measure for the deviation of ~o from c~. Let Tm be the largest value of T for which (7) 
still holds. Our problem will be to find an estimate for Tm in terms of e, ~, 0 and the initial condi- 
tion f (x) .  

Finally we remark that this definition of a good sw approximation is weaker than that 
used in [1] and [2]. There, (7) has been replaced by I1=-~oll < II~ll. 

4. Method of  Solution 

From now on, speaking about ~,/~ and ~o, we shall mean the classical solution of (3.1) . . . . .  (3.4), 
respectively (3.5) and (3.6). 

Assume that, for all t~ [-0, T] (in this and the next sections we assume T >= Tin), a, fl and ~o 
belong to W22 (R). Then according to (3.1), (3.2), (3.5) and lemma 2, for all t~ [0, T], a t and aot 
are in L 2 (R) too. Subtracting (3.5) from (3.1), multiplying the resulting equation by ~ -  % and 
integrating with respect to x over the entire x-axis, we find: 

d 3 %)2 dx + 2e 
dt II~-c~~ + o~ Ux ( ~ -  

f f: +2~0 (~ - ~o)/~xdx = 2~ (~ - ~o)(~ - ~o - / ~ ) J x  �9 
- - o 0  o0 

The interchangement of differentiation with respect to t and integration with respect to x 
was allowed as, for all te [0, T], e - e o  and c~ t -  cot belong to L 2 (R) and depend continuously 
on t. For all te [0, T], c~-eo e W2 2 (R) so e - %  tends to zero as Ix I--, oQ. Therefore the second 
integral in the left hand side vanishes. Furthermore, as 
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(a-%): (a -ao?+ (a- ao)(aax- ao aox) = 

and, due to lemma 2 and the continuity in t, sup [aox(X, z)l < oo, we have for te[0, T]:  
x,zEHt 

f 
where 

Ro(t) = sup [%x(X, z)l. 
X,~EI-I t 

Using Schwarz's inequality we find 

If ~176 -ao)fia~dx < (~ Rllfl[I [ l a -%[I ,  
- o o  

where 

R(t) = sup max[lax(x, z)[, Iflx(X, z)l].  
x , z~n t  

Now, we find for all t s [0, T]: 

d 
at I la-  a011-�89 I1~- aoll _-< # II (a -/~)~xll + # II%xxll- eOR II/~11 �9 

Multiplication of this inequality by exp [- �89 ~)R o (z)dr], integration with respect to t and 
use of: Ro(t)< Ro(t') when t <  t', gives 

f' [l(a-a~ o [ll(~xx-lJ~x)(~)ll+ll%~x(z)ll-#-~8oe(~)llfl(~)ll]e~R~162 (1) 

where 0___ t < T. 
By now, our problem is reduced to finding estimates for R, R o, I I/~11, II (a-/~)xxll and II%xxll. 

5. The Range of Validity of the SW Approximation 

As we already noticed in the introduction, it will be quite interesting to compare Tm with 
Tcrit, the time a shock wave starts to develop. It will turn out that Tcru for the solution of (3.1), 
..., (3.4) as well as for the solution of (3.5) and (3.6) is the same. It is defined as the smallest time 
at which the solution of the hyperbolic equation(s), obtained by putting # = 0 in (3.5) ((3.1) and 
(3.2)), has (have) a vertical tangent. For # = 0, we infer that 

a--- ao = f ( x - t - e a t ) ,  fl = O. 

Therefore 
1 

Z c r i t  = 
e sup [ - f '  (x)] 

x~R 

where the accent denotes differentiation with respect to x. 
If f (x) contains a compressive phase, i.e. supx~R [ - i f ( x ) ]  >0, then Tcrit is finite. 
The main object of this section is the derivation of an expression for Tm in terms of e, #, 0 

andf(x). We shall use local a priori estimates which also hold for # = 0. Therefore, those estimates 
in which derivatives are involved, probably will not hold for times exceeding Tcrit and with 
this method, we expect to find Tm< T~rit. However, the method is of interest as long as e is so 
small that the sw approximation breaks down before t = T~r~t. 
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212 M.F.H.  Schuurmans 

Let us introduce some additional notat ions:  ~ = r ,  /~x=s, c ~ = p ,  fl~=q, c%x--r o and 
~o~x = Po. We shall assume that r, s satisfy the ones-, p,q the twice- with respect to x differentiated 
partial differential equations and initial conditions (3.1) . . . . .  (3.4), in the classical sense. Further- 
more, let ro satisfy the ones-, Po the twice- with respect to x differentiated equations (3.5) and 
(3.6), in that sense. 

Theorem 1. Let, for all re[0,  T], ~, fl and ~o belong to W4(R) and 7 >=0. Then, for 

27 
o<= t < 5 (1-O)A(f, (1) 

where, for shortness, 

A(f; 7) = I[f"ll exp(v) + Ilf'l[ exp(�89 

the following estimates hold 

[[p(t)ll2 + [[q(t)[[2= [[f,,[[2 exp(27), 

]lr(t)ll2+ ]ls(t)ll2< I[f'll 2 exp(2y/5), 

][c~(t)[]2 + [[fl(t)[[2__ < IlJ'][ 2 exp [ - ~ - 0 7 / ( 1 - 0 ) ] ,  

R(t)< IIf"ll exp (~) + IIf'll exp(7/5), (2) 

IlPo(t)ll < IIf"ll exp(~), 

Ro(t)< [If"ll exp (7)+ IIf'll exp (?/5). 

Proof From (3.1), (3.2) and lemma 2, we easily infer that, for all t e [0, r ] ,  c~ t e L 2 (R) and fit e L 2 (R). 
Upon multiplying (3.1) by ~, (3.2) by fl, integrating with respect to x from - oo to oo and adding 
the resulting equations we find: 

dt (][c~l]2 + ]]fll12)+ 2eO 7fl(r-s)dx = -21~ (r-s)2 dx . 
- - o 0  oO 

The interchangement of differentiation with respect to t and integration with respect to x 
was allowed as c~, fi, at and fit belong to L2(R ) and depend continuously on t. Using Cauchy's 
inequality, we obtain 

[Ic~(t)]12+ ]]fl(t) ll2< I[f[] 2 exp[-2eR(t) Ot]. (3) 

In a similar way it is seen that :  

dt(llrlle+llsll2)+e [(r+Os)r2-(s+Or)s2]dx= -2t~ [p-q]2dx ,  
oo - - o o  

and 

d-t (IIplI= + Ilqll=) +~  (5r+3Os)p2dx-s (5s+3Or)q2dx+ 
oo - - o0  

f f +2e0 (r-s)pqdx = -2lz [px-qx]2dx. 
- - o 0  - - o 0  

From these relations, we infer: 

I[r(t)ll2 + IIs(t) ll2 < [[f'[I 2 exp [eR(t)(1 -O) t], 

IIp(t)ll2+ IIq(t)l[2 < IIf"[I 2 exp [5eR(t)(1 -O)t].  

According to lemma 2 and [sup x~R max (Irl, Is I)] 2 < 2 (supx~R I r I)2 + 2 (suppeR IS[) 2, we get 

(4) 

(5) 

Journal of En.qineerin9 Math., Vol, 5 (1971) 207-218 



The range of validity of a simple wave approximation 213 

sup max(lrl, Isl)~ (llrl[ 2 + IIs![=) ~ +  (llPll 2 + Ilql[2) ~ , 
xEN 

or combining with (4) and (5) 

e(t)< [If'll exp [�89 O)t] + Ilf'll exp [~eR (t)(1 - O) t]~ 

We have 

(6) 

e 7~ < 1 + (e ~-  1) x (7 > 0), (7) 

holding for 0_<_ x < 1. 
Assume that 

s gR(t)(1-O)t 
_< 1 ,  (8) 

7 

then we infer from (6) and (7) 

7(llf'l[ + IIf'll) 
R(t) _< 7_~et(  1 - O ) { A ( f  7 ) - I I f ' l l -  IIf'[I }" 

(9) 

Assumption (8) must be satisfied. This implies that (1) must hold. Using (1), we find from (9 t 
the inequality (2). From (8), (3), (4) and (5) and the remark that all estimates already found also 
hold for / t - -0  = 0, the remaining part of the theorem follows. 

Remark 
Instead of (7) we could have used: e~< ( 1 - x ) -  * for x~ [0, 1]. However, this leads to a quite 
complicated algebraic equation of order three. 

Theorem 2. Let o~, fi and ~o be defined as in the preceding theorem. I f  

Tm= max min [T o (7)/e, 6 T1 (7, e)/#], 
~,_>_o 

where 

27 
T~ = 5(1-O)A(J~ 7)' 

~llfll exp(-�89 
TI(Y, e) = #(1 +~/2)llf'll exp(7)-e0llfll A(f, y)exp [207/(0- 1)] 

then the sw approximation may be called good. 

Proof As is easily seen, using theorem 1, for t < min [To~z, 6T1/#], (4.1) holds. As 7 > 0 is still 
arbitrary, we may choose this number such that min [To~e, 6T1/#] assumes its maximum for 
some given e, #, 0 and J; thus proving the theorem. 

Corollary. We have 

To(7) 1 27 
- -  < - max 

e - e ~__>o 5(1-0)( l l / ' l [+l l f" l l )exp( �89 
> and so, using the triangle inequality, lemma 2 and suppeR If'(x)[ = supx~R [ - - f  (X)], we obtain 

Tm< (x/2/e) T~rit. It is thus seen that T,, < T~,i t indeed. 
Let t0 be a special value of e for which l + � 8 9  <0  holds in H T. Then the 

sound velocity a is real positive which is a necessary physical condition. As we assumed 
supx,,~nTl~+fi[ < 1 (section 3), we may choose to=  (2-26)/(1 +0). Let To(7 ) assume its maxi- 
mum for 7=7,,, As may be easily verified Tm=Ym(llf'll/l[f'[[) and 1 < 7,._< 5. Define el by 
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ro(~,~) arl(Tm, <) 
t l  # 

ea may be infinite and even negative. Let 71, 72 and 73 satisfy 

To(y) _ 5T1(7, e) 
e # 

and 73 < 72 = 71- If t l  > 0, then define e2 = min(to, el), else e2 =to.  

Theorem 3. Let  ~, fl and ~o be defined as in theorem 1. The sw approximation is good 
(i) for o<-t<-t2 if Tm=arl(7~, t)/U, 
(ii) for e 2 < t < t o (assuming this interval is not empty) if  Tm= To(7m)/t. 
If 6][f[[ [[f'[[1/[[f"][ ~ 1 is satisfied, we have t 2 > #. 

Proof  Let 0<~_<e2, then To(7)/t and bT,( 7, e)/#, considered as functions of 7, may have three 
points of intersection and 

[ro (7)/t (o< 7__< 72, 
! 

min [To~e, (~T1/#] = ~g)T1 (7, e)/p (73 ~ 7 ~ 72), 

"(To (7)It (72 < 7 ~ ~i). 

For 0<  7< 7,,, To(y) is a monotonically increasing-, for 7 > 7,, a monotonically decreasing 
function. As T 1 (7, t) is monotonically decreasing with respect to 7, (i) follows. 

Let t 2 < t < t o  and assume this interval, is not empty. Then To(7)/e and 6Ta(7, t)/# only 
intersect for y > 7,,- 

This proves (ii). 
Finally, using 1< 7,.__< 5 and - 1 <  0< 0, we obtain for t l s [0 ,  %]: 

~ l l f " l l  
t2 ~ 56 l l f l l  I I f ' l l ~ '  

from which the remaining part of the theorem immediately follows. 
For t2 < t < e0, the upper bound T,,, [see (ii)], is essentially due to the method followed (see 

also the corollary after theorem 2). If 0<  t_< t 2 then that bound results from the coupling 
between the c~- and/ / -mode and T,, is a monotonically decreasing function of t and #. This 
agrees with what we expected from a physical point of view. 

In case the equations are linear, i.e. e = 0, we find: 

a l l f l l  
T,. = (1 +x /2 )#11 f " l [  " 

Furthermore, when the ratio [[f"l[/l]f][ decreases and t is small enough, T,, increases. This 
happens when we start at t = 0 with a wave packet with a larger dominant wave length. 

If f (x) satisfies ~ [[f[[ Ilf'[P l/[If"I] ~ 1, a condition which could be expressed by : ')C(x) should 
not vary too slowly", then e 2 > # and the method followed is useful for a large range of e-values. 

One may ask whether it is possible to improve the results found by using other types of 
estimates. We remark that we have not taken advantage of the dissipative terms in equations 
(3.1), (3.2) and (3.5). Therefore, especially when te  [t2, %], it may be even possible to prove that 
the sw approximation holds for times exceeding T~ri,. 

In the next section, some global a priori estimates have been constructed for the solution of 
Cauchy's problem for the Burgers equation. Unfortunately, this has not been possible for the 
solution of (3.1), ..., (3.4). However, with help of the global estimates found, we may estimate 
the second term in (4.1). This gives at least some indication whether or not, in this way it will 
be possible to improve the results found in this section. 
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The range of validity of a simple wave approximation 215 

6. A Priori Estimate~ for Burgers' Equation 

First, we shall study the mixed problem for the equation of Burgers : 

C~o~+ [1 + ~o]  ~ox = ~C~oxx, 

eo(X, O) = ZN(x)T(x) (Ixl =< N),  

ao (N, t) = ao ( -  N, t) = 0 (0 < t < T) ,  

where )~N(x) is a sufficiently smooth function such that 0<  ZN< 1, XN= 1 for Ix[ < N - x / N -  1, 
;~N = 0 for [xl > N, )~} (_+ N) = Z} (-+ N) = 0 and the derivatives of ZN are uniformly bounded with 
respect to N. f(x) is defined as in the preceding sections. 

Extend the definition off(x) to Qr by putt ingf(x,  t )=f(x)  for all x, t~ QT. Let f(x,  t)~ C 2 + ~- 
(QT), then, by a suitable choice of Z~, (zNf)(x, t)e C2+~(QT) and the compatibility condition 
([1 +eao(X, 0)] aox(X, 0)=/tc%xx(x, 0)) at x =  + N  is satisfied. So according to Oleinik and 
Kruzhkov [12], a unique solution eo (x, t)E C 2 +~ (Qr) exists for all T > 0. In the following, we 
shall denote this solution by ao u. 

As a direct consequence of the generalized maximum principle for parabolic equations 
(see ch. I., section 2 of [11]), we have, for all T > 0 "  

sup lemoN(X, t)l < sup If(x)l �9 
x,teQT Ixl _--< N 

Next, we state: 

Lemma 3. For all T > O" 

supl~Nox(x,t)l<max{9e2~[sup IJq 2 ~ I  ]2  ~ [  ] }  , sup [(zNf)'] + sup If! + sup Ifl 
x,t~Q~ # Ltxi=<s Ixl_-<N ~ LIxI_~N �9 Ixl~N 

The proof may be given by using the method of auxiliary functions due to Bernshtein (cf. 
[12]). It is postponed to the appendix. 

Now, we return to the Cauchy problem. 

Theorem 4. The solution %(x, t) of (3.5) and (3".6) where feC2+V(HT), for all T <0, exists, is 
unique and belongs to C2+V(HT). Furthermore, for all T < 0 :  

sup logo(X, t)l < suplf(x)l < 1, 
X~t6HT xER 

sup I%x(x, t)l ~ max / sup 
x,tdtT t x~R 

If'(x)l + ~ I + supx~R ' 

9e2e-~supif(x)l~ =<max 1 + - + ~ , 9 e 2  . (1) 
V L x~R j # 

Proof The existence and uniqueness follow immediately from theorem 8.1, p. 495 of [11]. 
Let us consider ~ for N > No in a fixed cylinder QNT~ Then [11] it is shown that a subsequence 

Nk {% } exists that converges together with the derivatives %x,N~ C~Ox xN~ and aoN~ to the solution 7o of 
the Cauchy problem (3.5) and (3.6) and the corresponding derivatives in any fixed Q~o. Now, 
choose ZN(x) such that IZ~(x)l < c/(x/N+ 1) (c a positive constant). Then, for any positive 
numbers e and e', a number N1 (e, e') can be found such that for Nk > NI (e, ~') and 

sup I(f)(uk)'[< suplJ"l + e ,  
[xl < Nk x~R 
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supl%~l~ suplccN~I + e ' ~  sup ~r I%xl +~'-< e+e '+  
Q~o e~o e~ 

{supl f  e [ ~ p  )0 2 1 [  ]f]  9e2e[suplf()]] 2} +max '(x)] + ; If(x + SUPx~R ' ; X �9 

As e, e' and No are arbitrary we immediately deduce (1). The proof of the remaining inequality 
runs along similar lines. 

Remark 
To show that the estimate obtained for [%x] is quite accurate, we remark that the front of a 
shock wave solution of Burgers' equation, when fully developed, is approximately described 
by a steady state solution of that equation (Murray [13], Lighthill [4]). That is by 

%=�89 +a2)+�89 tanh { ~(al-a2)[x-t- �89 +a2)t] } 
412 

where a 1 (a2) is the value of % immediately behind (before) the front of the shock wave. Dif- 
ferentiation of this expression with respect to x shows that the result obtained has the same order 
of magnitude as the second term between curly brackets in (1). 

Finally, we prove 

Theorem 5. Let f~C2+V(Hr), Po, defined as in section 5, satisfy the twice with respect to x dif- 
ferentiated equations (3.5) and (3.6) in the classical sense and let, for all te [0, T], % belon9 to 
W~(R). Then, for te[O, T]: 

"Po(t)l[<l[f"l'exp(2~7). 

Proof According to the preceding theorem %eC2+~(Hr) for every T >0. Differentiate (3.5) 
with respect to x twice. For all tE [0, T], Pore L2 (R) as may be seen from the resulting equation 
easily. Multiply that equation by Po and integrate over the entire x-axis. Then, using lemma 1, 
partial integration with respect to x and interchanging differentiation with respect to t and 
integration (cf. theorem 1), we find: 

dt liP~ lOe %poPoJX = -212 ~dx . 
- o o  

According to Cauchy's inequality 

%poPo:,dx < sup [%1 IlPol[ 2 + ~ IlPo~ll 2 (v <0).  
o~ x E R  

Then, using theorem 4, we obtain 

dt [[P~176 ~ 2# + ]lpox(t)ll 2 . 

Choosing v = 5e/212, we deduce the theorem. 
Using the last two theorems, we infer from (4.1) that 

I[(c~--%)(t)[I < 12 f~o []l(~x~-fi~)(z)]]-12-~OR(~)llfl(z)l[]e~e"~176176 + 
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Now, for the terms between curly brackets to be smaller than ~llfll ,  it is necessary that  

t <  min~  ~ I _~llfll ~ 
- ( P l l f  II' ilf"ll(�89 j"  

(2) 

Assume that c511 f ll II f ' l l  1/llf"ll ~ 1. Then 5 2 >~ # and according to the former section we do not  
expect T,, to be larger than T~,~t. This is confirmed by the method  followed in this section as is 
easily seen from (2). However,  if ~llfll  IIf 'llltllf 'll  ~ 1 is violated, it does seem possible that  
Z m ~ Tcrit for some initial condition. Therefore,  I think future investigations should be concerned 
with a priori estimates for the set of nonl inear  equations. This is not  easy, for the nonl inear  set 
(3.1) and (3.2) is not  purely parabolic. It might be termed a mixed parabol ic-hyperbol ic  set. 
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Appendix 

We shall give a proof  of lemma 3. 
First, we prove that fo ra l l  T >0"  

'rmax 1 = max If(x)l + If(x)l �9 maxl~x(X,rT t)l < Ixl- -<Nmax I(f(x)zsv(x))'l + -~ Lx<= sv ; 
LI*I =N J 

Define 

(1) 

v - ~oN+M exp [ - K ( x + N ) ] ,  (2) 

where K __> k > 0, M > m > 0 but  further, as yet, arbitrary.  Subst i tut ion of (2) in (3.5) and putt ing 

1 
K = - + - max  If[,  we obtain" - v t -  Vx-  ecr TM + #vx, > 0. Therefore  v cannot  assume a posi- 

# # Ixl -_<N 

tive max imum in Qr/FT. Since, when we choose M = K - t  maxl~l _-< u] (fzN)'[ + max!~ I =< N If I, v(t, x) 
assumes its greatest value for x =  - N ,  then, G <  0 for x =  - N  an'd therefore eoUxl~= _N< MK. 
By considering e0 N - M exp [ -  K (x + N)]  we find similarly that 7~xlx = -N >= - MK. Thus, we 
have an estimate for Ic<~xl at x =  - N  and similarly for x = N .  We find (1). 

Next,  we prove the remaining part  of the lemma. Substitute the unknown function c~ = 4) (v), 
4b'(v) >4)0 > 0  in (3.5). Then, we obtain 

q$" 2 = 0  " v,+ [1 +~+] v~-~V~x-~ T vx 

Differentiation of this equat ion with respect to x is allowed according to theorem 9 of Oleinik 
and Kruzhkov  [12]. Therefore,  the function p = Vx satisfies 

4," /4 " \ '  
p,= _(l+e~))p _ e 4 ) , p 2 + t x p , x + 2 # ~ r p p ~ , + # t ~ )  p3. 

At a max imum of [p[ in QT/FT w e  have px=O, -PPxx >0 and PPt >0. So we find 
, / ~ " \ '  

o<=-~4 p3+stTJp4 (3) 
N T / "  

Now, choose 

O(v) = - 2 M + 3 e M  f v exp(-sm)ds (m > 0 ) ,  (4) 
jo 
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where M = maxlxl__< N I f  I- 
If c~0 N varies in the interval I - M ,  M] ,  v varies over a finite interval [vl,  vz]. Since 

e-S tuds  = 3ee > I e - S t u d s '  e -S tuds  = - < e - S t u d s '  
j o  e o 

we obtain 

1 
- -  < v l  < v2 < 1 .  (5)  
3e 

Now,  using (3), (4) and (5), it is seen that 

e 3 e M e  - ~m 
Ipl < - 

# m ( m - 1 ) v  m-2 

The right hand side of this inequality approximately assumes its smallest value for m = 2. 
Putting m = 2  and using (5) once again, we find, for all T > 0  

max peoNx] < 9e2 ~ M 2 . (6) 
QT/rT /2 

If ]~xr does  not  a s sume  a m a x i m u m  in Q T / F T ,  then 

m a x  [~oNxJ __( max  I~oN~(x, t)[. (7) 
QT/FT FT 

Combining  (1), (6) and (7), we find the lemma. 
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